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J. Phys. A: Math. Gen. 13 (1980) 2319-2330. Printed in Great Britain 

Reduction of the representations of the generalised 
Poincare algebra by the Galilei algebra 

V I Fushchich and A G Nikitin 
Mathematical Institute, Academy of Sciences of Ukrainian SSR, Repin Street 3, Kiev, 
USSR 

Received 25 September 1979, in final form 15 January 1980 

Abstract. The realisations of all classes of unitary irreducible representations of the 
generalised Poincark group P(1,4) have been found in a basis in which the Casimir operators 
of its important subgroup, i.e. the Galilei group, are of diagonal form. The exact form of the 
unitary operator which connects the canonical basis of the P(1,4) group and the Galilei basis 
has been established. 

1. Introduction 

Some years ago it was proposed to use the generalised PoincarC group P(1,4), the group 
of displacements and rotations in five-dimensional Minkovsky space, for the descrip- 
tion of particles with variable masses and spins (Fushchich and Krivsky 1968a, b, 
Fushchich 1970). This and other generalised groups P(l,n), P(2,3) etc were considered 
and used successively by Castell (1967), Aghassi et a1 (1970), Barrabes and Henry 
(1976), Elizalde and Gomish (1978) and many others. 

The main property of the P( 1,4) group is that it contains the PoincarC group P( 1,3) as 
well as the Galilei group G(3) as its subgroups?. So the P(1,4) group unified the groups 
of motion of relativistic and non-relativistic quantum mechanics. 

For the elucidation of the physical grounds of the generalised quantum mechanics 
based on the P(1,4) group (Fushchich and Krivsky 1968a, b, 1969) the important 
problem is the reduction of the irreducible representations IR of the P(1,4) group, or the 
Lie algebra of the P(1,4) group, by the IR of its subgroups, or its subalgebras$. The 
problem of the reduction of IR of the P(1,4) algebra corresponding to the time-like 
five-momenta by its subalgebra P(1,3) has been solved (Fushchich et a1 1976, Nikitin et 
al 1976), i.e. the type of representations of the P(1,3) algebra contained in the IR of the 
P( 1,4) algebra has been investigated and the unitary operator was found which connects 
the canonical basis of the P(1,4) group representation with the P(1,3) basis, in which the 
Casimir operators of the PoincarC group have the diagonal form (the spectrum of these 
operators is nondegenerate). 

In this paper we find the realisation of the IR of the P(1,4) algebra in the ‘Galilei 
basis’ namely, in the basis in which the invariant operators of the Galilei subalgebra are 
diagonal ones. We also obtain the explicit form of the unitary operator, which carries 

t The paper of Fedorchuck (1978) is devoted to the classification and the description of all subgroups of the 
P(1,4) group. 
$‘We will indicate the groups and the corresponding Lie algebras by the same indices. 

0305-4470/80/072319 + 12$01.50 @ 1980 The Institute of Physics 2319 



2320 V I  Fushchich and A G Nikitin 

out the reduction P(1,3) -* G(2) which plays an important role in the null-plane 
approach (see e.g. Leutwyler and Stern 1968). 

2. Statement of the problem 

The Lie algebra of the P(1,4) group is specified by the fifteen generators P,, JFY 
(p ,  v = 0, 1 ,2 ,3 ,4) ,  which satisfy the commutation relations 

The algebra (2.1) has three main invariant (Casimir) operators (Fushchich and Krivsky 
1968a, b) 

(2.2) 
1 V2 = - z J , ~ ~ , ~  v -1 p 2  = p,p, = p; -p2 -pi 1 - ZW,&,v 

where 
= iE,,,PuAJpuPA. 1 

As in the case of the PoincarC group, one can specify four different classes of the 
representations of the algebra (2.1), corresponding to Pz > 0, P2 = 0, P2 < 0 and P, = 0 
(in the last case one arrives at the representations of the homogeneous group S0(1,4), 
which are not considered here). 

Algebra (2.1) contains the Lie algebras of the PoincarC and of the Galilei groups as 
subalgebras. In order to select the subalgebra P(1,3) it is enough to consider the 
relations (2.1) for p, v # 4. The subalgebra G(3) may be obtained by the transition to 
the new basis 

A 

M=Po+P4 P, =Pa K = JO, p -1 
0 - 2 ( p O  - p 4 )  

(2.3) 
Ja = i E a b J b c  G: =.loa + J 4 a  G, =$(Jo, - J4a) .  

The operators (2.3) satisfy the commutation relations 

[go, P a ]  = [po, M] = [ p a ,  M] = [Fa, F b ]  = 0 

[po, J,] = [M, J,] = [G:, G:] = [M, G:] = 0 

[Fa, J b l =  iEabcpc 

[po, G,] = [G,, Gb]  = 0 

[G;, J b l =  iE,bcGc 

[G:, G, l=i(~abJc +&a) 
[pa, K] = [J,, K] = 0 

[M, K] = i M  

[G:, A] = i S , a  

[J,, J,] = k b J c  [BO, G z ]  = i&, 

[G;, MI = -iP, 

[G;, 4 1  = -ia,$o 

[Fo, K] = -iPo 
[G:, K] = rtiG:. 

The commutation relations (2.4) specify the Lie algebra of the extended Galilei 
group (Bargman 1954). The invariant operators of this algebra are given by the 
formulae 

C1= 2MFo - Pz C2 = (MJ - @ X G+)’ C3 = M. (12.6) 

(2.4) 
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Our aim is to find the realisations of the generators (2.3) for any class of IR of the 
P(1,4) algebra, in a basis where the Casimir operators (2.6) have a diagonal form. This 
enables us to answer the question what IR of the G(3) algebra are contained in the given 
representation of the P(1,4) algebra and to establish the connection between the vectors 
in the PoincarC and in the Galilei bases. 

The realisations of all IR of the P(1,4) algebra have already been found (Fushchich 
and Krivsky 1968a, b, 1969, Fushchich 1970). So the problem of the description of the 
IR of the P(1,4) algebra in the Galilei basis reduces to transforming the known 
realisation to a form in which the operators (2.6) are diagonal. 

3. The representations with P2 20 

Let us consider the IR of the P(1,4) algebra, which corresponds to the positive values of 
the invariant operator Pz = x 2  > 0. The generators P,, JFY in the canonical basis 
IPk, j3, r3; E, j ,  r, x )  have the form (Fushchich and Krivsky 1968a, b) 

p k  = Pk 2 2 2 112 P ~ = E E ~ E ( P  + ~ 4 + x  ) 

where &(k, 1 = 1 ,2 ,3 ,4 )  are the generators of the IR Do’, r )  of the SO(4) group. 

are the eigenfunctions of the complete set of the commuting operators 

T=Pk 

The basis of the realisation (3.1) is formed by the vectors lPk, j3, 73; E, j ,  r, x ) ,  which 

E^ = Po/lPol T -1 
3 - 2bJ12  - 0 4 3 )  

J -1 
3 - 2bJ12  + 0 4 3 )  

with the eigenvalues Pk, j3, r3, E, j ( j  + l ) ,  r ( r  + 1) and x 2  correspondingly, where j and r 
are the integers or half-integers labelling the IR of the SO(4) group, 

j3=- j , - j+1 ,  . . . , j  r3=-r, - r + l , .  . . , r  

E = f l  -m<pk<m.  

The basis vectors may be normalised according to 

(Pk,i3,73;E,i, r , ~ l p ~ , i ~ , r ~ ; ~ , i , r , ~ ) = 2 E S ( p k - ~ ~ ) S i , i ; S , , , j ,  

and the generators (3.1) are Hermitian with respect to the scalar product 

( p i ,  9 2 )  = (d4p/E)*:(pk, j3, 73)92(Pk, j3, 73). (3.2) 

The basis of the IR of the P(1,4) algebra, in which the invariant operators (2.6) of the 
G(3)algebraandtheoperatorsPa(a = 1,2 ,3)andS3= J3-(l/m)(P2G: -PlG;)have 
the diagonal form, will be called ‘Galilei basis’ (or ‘G(3) basis’) and denoted by 
Ips, m, s, s3; E ,  i, 7, x ) .  

I 
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We will normalise the basis vectors as 

( ~ ~ , m , s , ~ 3 ; ~ , j , ~ , ~ I p ~ , m ’ , s ’ , s ~ ; ~ , j , ~ , ~ ) = 2 m ~ ( m - m ’ ) S ( p , - ~ h ) S ~ , ~ ~ ~ , ~ ; .  

This will lead us to the scalar product 

O0 dm 
(41942) = , i - T , ; s j + ,  I, ; j d3P 4: (s, 83, m,P)4z(S, s3, W P ) .  (3.3) 

Our task is to establish the explicit form of the generators of the P(1,4) group in the 
Galilei basis and to find the transition operator, which connects the canonical and 
Galilei bases. First we substitute (3.1) into (2.3) and (2.6) and obtain the Galilei 
generators pF, Ja, G:, the invariant operators C, and the remaining generators G,, K 
in the canonical basis in a form 

M =  EE + ~ 4  Ja = -i(p x (slap)), + Sa p -- o - :(€E 7 ~ 4 )  
(3.4) 

Esabpb  - S4a ( E  X + EP4) G: = x4pa -Mx,  - 

c1= X 2  C ~ ~ { S 2 [ M ( E + ~ ) - ~ ~ z ] 2 + [ p 2 J r z - ( p .  J V ) ~ ] ( E + X  +~p4)’ 

E + x  

(3.5) + ( p  . S)’[2€M(E + X )  -p2]}(E + x)-’ C 3 = M  

The Casimir operator Cz (3.5) is in general the matrix which has elements depending 
on Pk. Our second step is to diagonalise this matrix with the help of some unitary 
transformation. We will look for the diagonalising operator in a form 

U1 = exp(iS4, pa81p)  (3.8) 
where p = ( p : + p ; + p : ) ” z  and 8 is an unknown function of p ,  p 4 .  

realisation: 
With the help of the operator (3.8) one may derive from (3.4) and (3.6) a new 

@ I  0 - - U,&u: =I$ $2 = u,r;,u: =pa 
(3.9) 

Jh = UiJaU: = Ja M’ = U1MU: = M 

(3.11) 
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Using the Hausdorf-Campbell formula 

" 1  
,,=o n .  exp(A)B exp(-A) = -$A, B}" {A, B}" = [{A, B}"-'] {A, B}' = B 

it is not difficult to calculate 

xh = xa + ( p a s 4 b p b / p 2 ) [ a e / a p  -(sin e ) / p i  + ( s a b p b / p 2 ) ( 1  -cos e)  + (1/p)s4, sin e 
SL = ~ 4 a  cos e + ( P a S 4 b P b / P 2 ) ( 1  -cos e)  + s a b p b  (sin e ) / p  (3.12) 

ShbPb  = s a b p b  cos 6 + [ ( p a S 4 b P b / P ) - P S 4 a l  sin 8 xk = x 4  + ( S 4 b P b / P ) ( a e / a P 4 ) .  

Substituting (3.12) into (3.10), one obtains 

(3.13) 

The expression (3.13) for GZ is much simplified, if one puts 

8 = 2  t a n - ' [ p / ( E + e p 4 + ~ ) 1 .  (3.14) 

For such a value of the parameter 6, we have: 

and 

(G:)' = x 4 p a  -Mx,. 

Substituting (3.9) and (3.15) into (2.6), we have 

Ck = M 2 S 2  

(3.15) 

(3.16) 

where the matrix S2 = S: + S$ + Sz always may be chosen in the diagonal form, 

s2+, = s(s + l h  ( ~ - T ( s s  ~j +T.  

The operators (3,9)-(3.11) are defined in a Hilbert space of square integrable 
functions +(pl,  p 2 ,  p 3 ,  p 4 ) .  In order to diagonalise the operator M (3.4) and (3.5) we 
introduce in place of {PI,  p 2 , p 3 , p 4 }  the new variables { p 1 , p 2 ,  p3 ,  m} where m = 
E + ~ p 4 .  Then 
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and the operators (3.9)-(3.11) and (3.15) take the form 

Jh = -i(p x ( d l a p ) ) ,  +Sa (G:)’= -icm(a/ap,) ( 3 . 1 7 ~ )  

c; = x 2  C; = m2S2 C; =Em (3.17b) 

K’= -im(a/am) (Gi)’  = i[-Ep,(a/am) -PA(a/ap,)]-~(S~bpb + S4’x)/m ( 3 . 1 7 ~ )  

where 

The generators (3.17) are Hermitian with respect to the scalar product (3.3). 
So we reach the following result: 

Theorem. The Hilbert space of the IR DE(%, j ,  T )  of the P(1,4) algebra, corresponding to 
P2 = x 2  > 0, is expanded into the direct integral of the subspaces, which correspond to 
the IR of the G(3) algebra with the following values of the invariant operators: C1 = x , 
C2=m2s(s+1) ,  C3=em, I x l s m  < 0 0 , l j - ~ 1 ~ S s j + ~ .  TheexplicitformoftheP(1,4) 
group generators in the Galilei basis and that of the transition operator, which connects 
the canonical and the G(3) bases, aregiven by the formulae (3.8), (3.14) and (3.17). 

To conclude this section we consider the IR of the P(1,4) algebra, corresponding to 
P2 = 0. The realisations of such an IR have been obtained in the form (Fushchikh and 
Krivsky 1968a, b): 

2 

P o  = EEO E ( p2 + P:)~” P a  =pa P4 = P4 

a 
aPa EO+p4 aP4 

J o 4  = -i-EEo - a sabpb Joa = -i-EEo - - E- 

a Sabpb 4,-i p.--p4- +E- - ( ap4 a:,) Eo+p4 

where S,b are the generators of the IRD(S) of the SO(3) group. Substituting (3.18) into 
(2.3), one obtains 

a 
K = -iEEo- 

aP4 

(3.18) 

It is not difficult to see that replacement of the variables {p,p4}+{p, m}, where 
m =Eo+q4,  reduces the generators (3.18) to the form (3.17), where, however, x = 0, 
0 s m <CO and s has the fixed value, which characterises the IR of the SO(3) group. So 
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we have established the explicit form of the generators of the P(1,4) group, correspond- 
ing to P2 = 0, in the Galilei basis. 

4. The representations with Pz< 0 

We now use the IR of the P(1,4) group, which corresponds to P2 = -v2 < 0. The 
generators of such representations have been obtained in the form (Fushchich and 
Krivsky 1968a, b, 1969) 

2 1 / 2  Po = Po Pa = P a  P4 = 4 p :  + 77 - P a  ) 

e = f l  
a 

Ja ,=i  (4.1) 

where Sup are the matrices which realise IR of the Lie algebra of the S0(1,4)  group. 
Reducing the representation (4.1) by the representations of the Lie algebra of the 

Galilei group, the mass operator M = Po + P4 may take the zero value. Let us impose 
the G(3)-invariant condition of turning into zero in the hyperspace, corresponding to 
zero eigenvalues of the operator M, on the functions from the space of the IR (4.1) (this 
hyperspace is the five-dimensional half-cylinder p 2  = v2, ep0 < 0). 

Using the transformation operator on the generators (4.1) 

U2 = exp(iSoapa8/p)  8 = 2  tanh-'[p/(r] +lP41+~po)] (4.2) 
and using the relations 

. a  x, =1- 
1 ae 

uzxou;' =x0+Soapa- - 
P aP0 aP, 

s a b p b  sinh e + T ( l - c o s h  e) 
P 

p SObPb ad 1 u,xau;l = x a  +a - --- 
P P ( a ,  P 

one comes to the realisation 

Pb: = po P:: =pa  PI;=e(p:+772-p2)1'2 
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Substituting (4.3) into (2.3) and going from {pa, PO} to the new variables { p a ,  m}, 
where m = po + ( p i  + q2 - p a )  , one obtains the Galilei group generators in the form 
(3.17a), and the remaining generators G,, K in the form (3.17c), where, however, 
mo=-q / 2 m ,  -q2<m<0,  O<m <CO, and S a b  are the generators of the group 
SO(3) c S0(1,3). 

2 1/2 

2 

5. Covariant representation of the P(1,4) group 

Consider an arbitrary covariant representation of the Lie algebra of the P(1,4) group. 
Such a representation is realised by the operators 

(5.1) 

where S,, are the generators of a representation of the S0(1,4) group. Let us confine 
ourselves to the case where P,P’V > 0. 

Substituting (5.1) into (2.3), we obtain 
1 

Pa = Pa p -1 
0 - Z(PO-p4) 

M = p o + p 4  

For the transition of the realisation (5.2) into the Galilei basis we use the operator 

U3 = exp[iA+p/M]. (5.3) 
With the help of the transformation 

1 1  

P, -+ P; = u,P,v,’ 
G: -+(G:)’”= U3G;U;’ 

Ja -+ J z  = U3JaU;’ 

K + K”’ = V3KU;l, 

one comes to the realisation in which the invariant operators (2.6) of the G(3) 
subalgebra are of diagonal form: 

fit =$(po-PL) P z  =pa M”’ = M = PO +p4 

J:  = -i(p x slap), + S a  G: = fopa - x,M 

1 where Sa = ZEabcSbc. The operators C, (2.6) take the form 
cy =pwpF cy Cy - M  
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i.e. the eigenvalues of the operator C1 coincide with the values of P2,  the eigenvalues of 
the operator C2 are characterised by the spectrum of the Casimir operator of the group 
SO(3) c S0(1,4), and the eigenvalues of the operator C3 lie in the interval (C:)'I2 s 

The results of this section may be used for the diagonalisation of the wave equations, 
which are invariant under the P(1,4) group. As an example we will consider the 
five-dimensional generalisation of the Dirac equation 

c; <Co. 

( y ,p& + x)Y = 0 p = 0,1,2,3,4.  (5.4) 
On the set of the solutions of the equation (5.4) the generators of the P(1,4) group have 
the form (5.1) where S,, =&,, y Y ] .  Using the operator (5.3) on equation (5.4), one 
obtains an equation, which is equivalent to (5.4) but is manifestly invariant under the 
Galilei group 

fir@+ = (x/2m +p2/2m)@+ @-=O (5.5) 

where 

@* = $(I * yOy4)@ @ =  U3Y xSm<Co. 

If one imposes the Galilean-invariant subsidiary condition (PO + p 4 ) 9  = moY and 
puts x =0, then equation (5.4) is reduced to the Levi-Leblond equation for the 
non-relativistic particle of spin s = 3 (Levi-Leblond 1967). In this case (5.3) coincides 
with the operator which diagonalises the Levi-Leblond equation (Nikitin and Salogub 
1975). 

6. IR of the Poincar6 group in the G(2) basis 

The transition of the IR of the P(1,3) group to the basis of a two-dimensional Galilei 
group G(2) may be made by complete analogy with the reduction P(1,4) + G(3). Here 
we consider only the representations of the P(1,3) group, which correspond to time-like 
four-momenta. The generators of such a representation in a Shirokov-Foldy realisa- 
tion (Shirokov 1954a, b, Foldy 1956) have the form (3.1) where p, v = 0, 1 ,2 ,3;  
k, 1 = 1,2,3.  With the help of the transformation 

P, 4, = up,u-' J,,, + jWY = UJ,,U-' 
where 

U = exp{(i~3,p~/Ipl) tan-l[lpI/(lPol + E P ~ + x ) } ,  tPI = ( p : + P Y '  ff = 1,2, 

and the following replacement of the variables {PI, p2,  p3}+ {PI, p2,  m}, where m = 
~ p ~ f ( p : + p ; + x ~ ) ~ / * ,  one obtains the generators of the PoincarC group in the G(2) 
basis: 

fia = p a ,  p o-:(Fo+F3)=x2/2m _ -  +JpI2/2m 

J3 = i[p2(a/apl) -pl(a/ap2)l+ S12 M = E m  (6.1) 



2328 V I  Fushchich and A G Nikitin 

The operators (6.1) coincide with the ‘kinematical group generators’, which are used 
in the null-plane formalism (see e.g. Leutwyler and Stern 1968). 

Using the results of 9 3-9 5 ,  it is not difficult to make the transition into the G(2) 
basis of the representations of the P(1,3) algebra which corresponds to light-like and 
space-like four-momenta. 

7. Connection between the Galiiei and the Poincare bases 

We now consider the connection between the realisations of the generators of the P( 1,4) 
group (corresponding to time-like five-momenta) in both the Galilei and PoincarC 
bases. 

The generators of the P(1,4) group in the PoincarC basis (i.e. in the basis where the 
Casimir operators of the P(1,3) group are of diagonal type) have the form (Fushchich et 
a1 1976, Nikitin et a1 1976) 

where 

{A, B }  = AB +BA IxlSA<Oo. 

The generators (7.1) are Hermitian with respect to the scalar product 

As soon as the operators (7.1) and (3.17) realise the same IRD+(x, j ,  T) of the P(1,4) 
group, the equivalence transformation, which connects these two realisations, exists. In 
order to come from (7.1) to (3.17), we make the isometric transformation 

P, + wp,w-’ J,” + WJ,, W-’ (7.2) 

and the following replacement of variables 

Pa +Pa rii+rii(m,p) 

where 

w = (1 - x / ~ ’ ) l / ~  exp[i(s4,pa/p)(~1- 0211 

el = 2 tan-l{p/[E + ~ ~ ( r i i ’ -  x2)l/’ +XI) 

82 = 2 t a n - 1 [ ~ 4 p ( A 2 - ~ 2 ) ” 2 / ( E + m ) ( m  + x ) l  

A = (1/2m)[(m - x  - ~ ’ ) ~ + 4 m  x I 2 2  2 2 1/2 . 

(7.3) 

(7.4) 
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One can ensure by direct verification that the transformations (7.2)-(7.4) reduce the 
generators (7.1) into the Galilei basis (i.e. that the transformed generators coincide with 
(3.17) after substitution into (2.3)). We do not give the detailed calculations here 
because the transformations (7.2)-(7.4) may be represented as two consequent ones: 
namely, the transition from the Poincar6 to the canonical basis (Nikitin et a1 1976) 

P, + vp,v-' JWy + VJ,,V-' 

til + til ( p 4 )  = E 4 ( p :  + x 2 y 2  (7.5) 
2 - 2 1 /4  V = ( 1  - x l m  ) exp(iSo,pa82/p) 

and then the transition from the canonical basis to the Galilei one (see § 3). So 

w=u1v 
where V and U1 are given by equations ( 7 . 9 ,  (3.8), (3.14). 

The transformation (7.2)-(7.4) may be used to establish the connection between the 
vectors in the Galilei and in the PoincarC bases. This connection is given by the 
equations: 

4 ( ~ ,  m, s, s3) = W$~P~,P,,P~;X(P, m( f i ,P ) ,  s, $3) 

X ( P ,  m, s, s3) = W P,P,,PJ's;#(~, eh ,  P), s, s3) 
m ( t i l , p ) = ~ 4 ( t i l ~ - x  2 ) 1 / 2 + ( p 2 + t i 1 2 ) 1 / 2  

I j - T I  S S ,  S f  S j  + 7 - S < S 3 S S  - S f S S &  < s t  

-1 - - 

where Ps, P,,, Ps, $,,, p,, a,, are the projectors into the subspace with the corresponding 
fixed value of s and s3. 

S2-s'(s'+1) s3 - s'3 
Ps3= n: I ps =E s(s + l)-S'(s'+ 1 )  53#s, s3 - s3 
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