Reduction of the representations of the generalised Poincare algebra by the Galilei algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 132319
(http://iopscience.iop.org/0305-4470/13/7/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 05:31

Please note that terms and conditions apply.

Reduction of the representations of the generalised Poincaré algebra by the Galilei algebra

V I Fushchich and A G Nikitin
Mathematical Institute, Academy of Sciences of Ukrainian SSR, Repin Street 3, Kiev, USSR

Received 25 September 1979, in final form 15 January 1980

Abstract

The realisations of all classes of unitary irreducible representations of the generalised Poincaré group $\mathrm{P}(1,4)$ have been found in a basis in which the Casimir operators of its important subgroup, i.e. the Galilei group, are of diagonal form. The exact form of the unitary operator which connects the canonical basis of the $P(1,4)$ group and the Galilei basis has been established.

1. Introduction

Some years ago it was proposed to use the generalised Poincaré group $\mathrm{P}(1,4)$, the group of displacements and rotations in five-dimensional Minkovsky space, for the description of particles with variable masses and spins (Fushchich and Krivsky 1968a, b, Fushchich 1970). This and other generalised groups $\mathrm{P}(1, n), \mathrm{P}(2,3)$ etc were considered and used successively by Castell (1967), Aghassi et al (1970), Barrabes and Henry (1976), Elizalde and Gomish (1978) and many others.

The main property of the $P(1,4)$ group is that it contains the Poincaré group $P(1,3)$ as well as the Galilei group $G(3)$ as its subgroupst. So the $P(1,4)$ group unified the groups of motion of relativistic and non-relativistic quantum mechanics.

For the elucidation of the physical grounds of the generalised quantum mechanics based on the $\mathrm{P}(1,4)$ group (Fushchich and Krivsky 1968a, b, 1969) the important problem is the reduction of the irreducible representations IR of the $P(1,4)$ group, or the Lie algebra of the $\mathrm{P}(1,4)$ group, by the IR of its subgroups, or its subalgebras \ddagger. The problem of the reduction of $I R$ of the $P(1,4)$ algebra corresponding to the time-like five-momenta by its subalgebra $P(1,3)$ has been solved (Fushchich et al 1976, Nikitin et al 1976), i.e. the type of representations of the $P(1,3)$ algebra contained in the IR of the $P(1,4)$ algebra has been investigated and the unitary operator was found which connects the canonical basis of the $\mathrm{P}(1,4)$ group representation with the $\mathrm{P}(1,3)$ basis, in which the Casimir operators of the Poincaré group have the diagonal form (the spectrum of these operators is nondegenerate).

In this paper we find the realisation of the IR of the $P(1,4)$ algebra in the 'Galilei basis' namely, in the basis in which the invariant operators of the Galilei subalgebra are diagonal ones. We also obtain the explicit form of the unitary operator, which carries

[^0]out the reduction $\mathrm{P}(1,3) \rightarrow \mathrm{G}(2)$ which plays an important role in the null-plane approach (see e.g. Leutwyler and Stern 1968).

2. Statement of the problem

The Lie algebra of the $\mathrm{P}(1,4)$ group is specified by the fifteen generators $P_{\mu}, J_{\mu \nu}$ ($\mu, \nu=0,1,2,3,4$), which satisfy the commutation relations

$$
\begin{align*}
& {\left[P_{\mu}, P_{\nu}\right]=0 \quad\left[P_{\mu}, J_{\nu \sigma}\right]=\mathrm{i}\left(g_{\mu \nu} P_{\sigma}-g_{\mu \sigma} P_{\nu}\right)} \\
& {\left[J_{\mu \nu}, J_{\rho \sigma}\right]=\mathrm{i}\left(g_{\mu \sigma} J_{\nu \rho}+g_{\nu \rho} J_{\mu \sigma}-g_{\mu \rho} J_{\nu \sigma}-g_{\nu \sigma} J_{\mu \rho}\right) .} \tag{2.1}
\end{align*}
$$

The algebra (2.1) has three main invariant (Casimir) operators (Fushchich and Krivsky 1968a, b)
$P^{2}=P_{\mu} P^{\mu}=P_{0}^{2}-P^{2}-P_{4}^{2} \quad V_{1}=\frac{1}{2} \omega_{\mu \nu} \omega_{\mu \nu} \quad V_{2}=-\frac{1}{4} J_{\mu \nu} \omega_{\mu \nu}$
where

$$
\omega_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma \lambda} J^{\rho \sigma} P^{\lambda} .
$$

As in the case of the Poincaré group, one can specify four different classes of the representations of the algebra (2.1), corresponding to $P^{2}>0, P^{2}=0, P^{2}<0$ and $P_{\mu} \equiv 0$ (in the last case one arrives at the representations of the homogeneous group $\mathrm{SO}(1,4)$, which are not considered here).

Algebra (2.1) contains the Lie algebras of the Poincaré and of the Galilei groups as subalgebras. In order to select the subalgebra $\mathrm{P}(1,3)$ it is enough to consider the relations (2.1) for $\mu, \nu \neq 4$. The subalgebra $\mathrm{G}(3)$ may be obtained by the transition to the new basis

$$
\begin{array}{lrl}
\hat{P}_{0}=\frac{1}{2}\left(P_{0}-P_{4}\right) & M=P_{0}+P_{4} & \hat{P}_{a}=P_{a} \quad K=J_{0 a} \\
J_{a}=\frac{1}{2} \epsilon_{a b a} J_{b c} & G_{a}^{+}=J_{0 a}+J_{4 a} & G_{a}^{-}=\frac{1}{2}\left(J_{0 a}-J_{4 a}\right) \tag{2.3}
\end{array}
$$

The operators (2.3) satisfy the commutation relations

$$
\begin{align*}
& {\left[\hat{P}_{0}, P_{a}\right]=\left[\hat{P}_{0}, M\right]=\left[\hat{P}_{a}, M\right]=\left[\hat{P}_{a}, \hat{P}_{b}\right]=0} \\
& {\left[\hat{P}_{0}, J_{a}\right]=\left[M, J_{a}\right]=\left[G_{a}^{+}, G_{b}^{+}\right]=\left[M, G_{a}^{+}\right]=0} \\
& {\left[\hat{P}_{a}, J_{b}\right]=\mathrm{i} \epsilon_{a b} \hat{P}_{c} \quad\left[G_{a}^{+}, \hat{P}_{b}\right]=\mathrm{i} \delta_{a b} M} \tag{2.4}\\
& {\left[J_{a}, J_{b}\right]=\mathrm{i} \epsilon_{a b a} J_{c} \quad\left[\hat{P}_{0}, G_{b}^{+}\right]=\mathrm{i} \hat{P}_{b}} \\
& {\left[\hat{P}_{0}, G_{a}^{-}\right]=\left[G_{a}^{-}, G_{b}^{-}\right]=0 \quad\left[G_{a}^{-}, M\right]=-\mathrm{i} \hat{P}_{a}} \\
& {\left[G_{a}^{-}, J_{b}\right]=\mathrm{i} \epsilon_{a b c} G_{c}^{-} \quad\left[G_{a}^{-}, \hat{P}_{b}\right]=-\mathrm{i} \delta_{a b} \hat{P}_{0}} \\
& {\left[G_{a}^{+}, G_{a}^{-}\right]=\mathrm{i}\left(\epsilon_{a b a} J_{c}+\delta_{a b} K\right)} \tag{2.5}\\
& {\left[\hat{P}_{a}, K\right]=\left[J_{a}, K\right]=0 \quad\left[\hat{P}_{0}, K\right]=-\mathrm{i} P_{0}} \\
& {[M, K]=\mathrm{i} M \quad \quad\left[G_{a}^{ \pm}, K\right]= \pm \mathrm{i} G_{a}^{ \pm} .}
\end{align*}
$$

The commutation relations (2.4) specify the Lie algebra of the extended Galilei group (Bargman 1954). The invariant operators of this algebra are given by the formulae

$$
\begin{equation*}
C_{1}=2 M \hat{P}_{0}-\hat{\boldsymbol{P}}^{2} \quad C_{2}=\left(M \boldsymbol{J}-\hat{\boldsymbol{P}} \times \boldsymbol{G}^{+}\right)^{2} \quad C_{3}=M . \tag{2.6}
\end{equation*}
$$

Our aim is to find the realisations of the generators (2.3) for any class of IR of the $\mathrm{P}(1,4)$ algebra, in a basis where the Casimir operators (2.6) have a diagonal form. This enables us to answer the question what IR of the $G(3)$ algebra are contained in the given representation of the $P(1,4)$ algebra and to establish the connection between the vectors in the Poincaré and in the Galilei bases.

The realisations of all IR of the $P(1,4)$ algebra have already been found (Fushchich and Krivsky 1968a, b, 1969, Fushchich 1970). So the problem of the description of the IR of the $P(1,4)$ algebra in the Galilei basis reduces to transforming the known realisation to a form in which the operators (2.6) are diagonal.

3. The representations with $\boldsymbol{P}^{\mathbf{2}} \geqslant 0$

Let us consider the IR of the $P(1,4)$ algebra, which corresponds to the positive values of the invariant operator $P^{2}=\varkappa^{2}>0$. The generators $P_{\mu}, J_{\mu \nu}$ in the canonical basis $\left|p_{k}, j_{3}, \tau_{3} ; \epsilon, j, \tau, x\right\rangle$ have the form (Fushchich and Krivsky 1968a, b)

$$
\begin{align*}
& P_{0}=\epsilon E \equiv \epsilon\left(p^{2}+p_{4}^{2}+x^{2}\right)^{1 / 2} \\
& J_{k l}=\mathrm{i}\left(p_{l} \frac{\partial}{\partial p_{k}}-p_{k} \frac{\partial}{\partial p_{l}}\right)+S_{k l}, \quad k, l=1,2,3,4 \tag{3.1}\\
& J_{0 k}=-\mathrm{i} \epsilon E \frac{\partial}{\partial p_{k}}-\epsilon \frac{S_{k l} p_{l}}{E+x} \\
& \quad \epsilon= \pm 1
\end{align*}
$$

where $S_{k l}(k, l=1,2,3,4)$ are the generators of the $\operatorname{IR} D(j, \tau)$ of the $\operatorname{SO}(4)$ group.
The basis of the realisation (3.1) is formed by the vectors $\left|p_{k}, j_{3}, \tau_{3} ; \epsilon, j, \tau, x\right\rangle$, which are the eigenfunctions of the complete set of the commuting operators
$T=P_{k} \quad J_{3}=\frac{1}{2}\left(\omega_{12}+\omega_{43}\right) \quad T_{3}=\frac{1}{2}\left(\omega_{12}-\omega_{43}\right) \quad \hat{\epsilon}=P_{0} /\left|P_{0}\right|$
$J^{2}=\frac{1}{4 \varkappa^{2}}\left(V_{1}+2 \epsilon \chi V_{2}\right) \quad T^{2}=\frac{1}{4 \varkappa^{2}}\left(V_{1}-2 \epsilon \chi V_{2}\right) \quad P^{2}$,
with the eigenvalues $p_{k}, j_{3}, \tau_{3}, \epsilon, j(j+1), \tau(\tau+1)$ and x^{2} correspondingly, where j and τ are the integers or half-integers labelling the IR of the $\mathrm{SO}(4)$ group,

$$
\begin{aligned}
& j_{3}=-j,-j+1, \ldots, j \quad \tau_{3}=-\tau,-\tau+1, \ldots, \tau \\
& \epsilon= \pm 1 \quad-\infty<p_{k}<\infty .
\end{aligned}
$$

The basis vectors may be normalised according to

$$
\left\langle p_{k}, j_{3}, \tau_{3} ; \epsilon, j, \tau, \chi \mid p_{k}^{\prime}, j_{3}^{\prime}, \tau_{3}^{\prime} ; \epsilon, j, \tau, x\right\rangle=2 E \delta\left(p_{k}-p_{k}^{\prime}\right) \delta_{j_{3} j_{3}^{\prime}} \delta_{\tau_{3} \tau_{3}^{\prime}}
$$

and the generators (3.1) are Hermitian with respect to the scalar product

$$
\begin{equation*}
\left(\Psi_{1}, \Psi_{2}\right)=\int\left(\mathrm{d}^{4} p / E\right) \Psi_{1}^{\dagger}\left(p_{k}, j_{3}, \tau_{3}\right) \Psi_{2}\left(p_{k}, j_{3}, \tau_{3}\right) \tag{3.2}
\end{equation*}
$$

The basis of the IR of the $\mathrm{P}(1,4)$ algebra, in which the invariant operators (2.6) of the $\mathrm{G}(3)$ algebra and the operators $P_{a}(a=1,2,3)$ and $S_{3}=J_{3}-(1 / m)\left(P_{2} G_{1}^{+}-P_{1} G_{2}^{+}\right)$have the diagonal form, will be called 'Galilei basis' (or ' $G(3)$ basis') and denoted by $\left|p_{a}, m, s, s_{3} ; \epsilon, j, \tau, x\right\rangle$.

We will normalise the basis vectors as
$\left\langle p_{a}, m, s, s_{3} ; \epsilon, j, \tau, x \mid p_{a}^{\prime}, m^{\prime}, s^{\prime}, s_{3}^{\prime} ; \epsilon, j, \tau, x\right\rangle=2 m \delta\left(m-m^{\prime}\right) \delta\left(p_{a}-p_{a}^{\prime}\right) \delta_{s s^{\prime}} \delta_{s_{3} s_{3}^{\prime}}$.
This will lead us to the scalar product

$$
\begin{equation*}
\left(\phi_{1}, \phi_{2}\right)=\sum_{|i-\tau| \leqslant s \leqslant j+\tau} \int_{x}^{\infty} \frac{\mathrm{d} m}{m} \int \mathrm{~d}^{3} p \phi_{1}^{\dagger}\left(s, s_{3}, m, \boldsymbol{p}\right) \phi_{2}\left(s, s_{3}, m, p\right) . \tag{3.3}
\end{equation*}
$$

Our task is to establish the explicit form of the generators of the $\mathrm{P}(1,4)$ group in the Galilei basis and to find the transition operator, which connects the canonical and Galilei bases. First we substitute (3.1) into (2.3) and (2.6) and obtain the Galilei generators $\hat{P}_{\mu}, J_{a}, G_{a}^{+}$, the invariant operators C_{a} and the remaining generators G_{a}^{-}, K in the canonical basis in a form

$$
\begin{gather*}
\hat{P}_{0}=\frac{1}{2}\left(\epsilon E-p_{4}\right) \quad M=\epsilon E+p_{4} \quad J_{a}=-\mathrm{i}(\boldsymbol{p} \times(\partial / \partial \boldsymbol{p}))_{a}+S_{a} \tag{3.4}\\
G_{a}^{+}=x_{4} p_{a}-M x_{a}-\frac{\epsilon S_{a b} p_{b}-S_{4 a}\left(E+\chi+\epsilon p_{4}\right)}{E+x} \\
C_{1}=\varkappa^{2} \quad C_{2}=\left\{\boldsymbol{S}^{2}\left[M(E+\chi)-\epsilon \boldsymbol{p}^{2}\right]^{2}+\left[\boldsymbol{p}^{2} \mathcal{N}^{2}-(\boldsymbol{p} \cdot \mathcal{N})^{2}\right]\left(E+\chi+\epsilon p_{4}\right)^{2}\right. \\
\left.+(\boldsymbol{p} \cdot \boldsymbol{S})^{2}\left[2 \epsilon M(E+x)-\boldsymbol{p}^{2}\right]\right\}(E+\chi)^{-2} \quad C_{3}=M \tag{3.5}\\
G_{a}^{-}=\frac{1}{2}\left[-x_{4} p_{a}-\hat{P}_{0} x_{a}-\frac{\epsilon S_{a b} p_{b}-S_{4 a}\left(E+\chi-\epsilon p_{4}\right)}{E+\varkappa}\right] \\
K=-\hat{P}_{0} x_{4}-\epsilon \frac{S_{4 a} p_{a}}{E+\varkappa}, \tag{3.6}
\end{gather*}
$$

where

$$
\begin{equation*}
S_{a}=\frac{1}{2} \epsilon_{a b c} S_{b c} \quad \mathcal{N}_{a}=S_{4 a} \quad x_{k}=\mathrm{i}\left(\partial / \partial p_{k}\right) \tag{3.7}
\end{equation*}
$$

The Casimir operator C_{2} (3.5) is in general the matrix which has elements depending on p_{k}. Our second step is to diagonalise this matrix with the help of some unitary transformation. We will look for the diagonalising operator in a form

$$
\begin{equation*}
U_{1}=\exp \left(\mathrm{i} S_{4 a} p_{a} \theta / p\right) \tag{3.8}
\end{equation*}
$$

where $p=\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)^{1 / 2}$ and θ is an unknown function of p, p_{4}.
With the help of the operator (3.8) one may derive from (3.4) and (3.6) a new realisation:

$$
\begin{gather*}
\hat{P}_{0}^{\prime}=U_{1} \hat{P}_{0} U_{1}^{\dagger}=\hat{P}_{0} \quad \hat{P}_{a}^{\prime}=U_{1} \hat{P}_{a} U_{1}^{\dagger}=\hat{P}_{a} \\
J_{a}^{\prime}=U_{1} J_{a} U_{1}^{\dagger}=J_{a} \quad M^{\prime}=U_{1} M U_{1}^{\dagger}=M \tag{3.9}\\
\left(G_{a}^{+}\right)^{\prime}=U_{1} G_{a}^{+} U_{1}^{\dagger}=x_{4}^{\prime} p_{a}-x_{a}^{\prime} M-\frac{\epsilon S_{a b}^{\prime} p_{b}-S_{4 a}^{\prime}\left(E+x+\epsilon p_{4}\right)}{E+x} \tag{3.10}\\
\left(G_{a}^{-}\right)^{\prime}=U_{1} G_{a}^{-} U_{1}^{\dagger}=\frac{1}{2}\left(-x_{4}^{\prime} p_{a}-\hat{P}_{0} x_{a}^{\prime}-\frac{\epsilon S_{a b}^{\prime} p_{b}-S_{4 a}^{\prime}\left(E+x-\epsilon p_{4}\right)}{E+x}\right) \\
K^{\prime}=U_{1} K U_{1}^{\dagger}=-\hat{P}_{0} x_{4}^{\prime}-\epsilon S_{4 a}^{\prime} p_{a} /(E+x) \tag{3.11}
\end{gather*}
$$

where

$$
x_{k}^{\prime}=U_{1} x_{k} U_{1}^{\dagger} \quad S_{k l}^{\prime}=U_{1} S_{k l} U_{1}^{\dagger}
$$

Using the Hausdorf-Campbell formula
$\exp (A) B \exp (-A)=\sum_{n=0}^{\infty} \frac{1}{n!}\{A, B\}^{n}$

$$
\{A, B\}^{n}=\left[\{A, B\}^{n-1}\right]
$$

$$
\{A, B\}^{0}=B
$$

it is not difficult to calculate
$x_{a}^{\prime}=x_{a}+\left(p_{a} S_{4 b} p_{b} / p^{2}\right)[\partial \theta / \partial p-(\sin \theta) / p]+\left(S_{a b} p_{b} / p^{2}\right)(1-\cos \theta)+(1 / p) S_{4 a} \sin \theta$
$\boldsymbol{S}_{4 a}^{\prime}=S_{4 a} \cos \theta+\left(p_{a} S_{4 b} p_{b} / p^{2}\right)(1-\cos \theta)+S_{a b} p_{b}(\sin \theta) / p$
$S_{a b}^{\prime} p_{b}=S_{a b} p_{b} \cos \theta+\left[\left(p_{a} S_{4 b} p_{b} / p\right)-p S_{4 a}\right] \sin \theta \quad x_{4}^{\prime}=x_{4}+\left(S_{4 b} p_{b} / p\right)\left(\partial \theta / \partial p_{4}\right)$.
Substituting (3.12) into (3.10), one obtains

$$
\begin{align*}
\left(G_{a}^{+}\right)^{\prime}=x_{4} p_{a} & -M x_{a}+\frac{p_{a} S_{4 b} p_{b}}{p}\left[\frac{\partial \theta}{\partial p_{4}}-\frac{M}{p}\left(\frac{\partial \theta}{\partial p}-\frac{1}{p} \sin \theta\right)-\frac{\epsilon}{E+x} \sin \theta\right. \\
& \left.+\frac{E+\varkappa+\epsilon p_{4}}{(E+x) p}(1-\cos \theta)\right]+\frac{S_{a b} p_{b}}{p}\left[\left(\frac{M}{p}-\frac{\epsilon p}{E+\varkappa}\right) \cos \theta-\frac{M}{p}\right. \\
& \left.+\frac{E+\varkappa+\epsilon p_{4}}{(E+\varkappa)} \sin \theta\right]+S_{4 a}\left[\left(\frac{\epsilon p}{E+x}-\frac{M}{p}\right) \sin \theta+\frac{E+x+\epsilon p_{4}}{(E+x)} \cos \theta\right] . \tag{3.13}
\end{align*}
$$

The expression (3.13) for G_{a}^{+}is much simplified, if one puts

$$
\begin{equation*}
\theta=2 \tan ^{-1}\left[p /\left(E+\epsilon p_{4}+x\right)\right] . \tag{3.14}
\end{equation*}
$$

For such a value of the parameter θ, we have:

$$
\begin{aligned}
& \sin \theta=\frac{p\left(E+x+\epsilon p_{4}\right)}{(E+x)\left(E+\epsilon p_{4}\right)} \quad 1-\cos \theta=\left[p^{2} /(E+p)\left(E+\epsilon p_{4}\right)\right] \\
& \epsilon \frac{\partial \theta}{\partial p_{4}}-\frac{E+\epsilon p_{4}}{p} \frac{\partial \theta}{\partial p}=-\sin \theta \frac{E+\epsilon p_{4}}{p^{2}}
\end{aligned}
$$

and

$$
\begin{equation*}
\left(G_{a}^{+}\right)^{\prime}=x_{4} p_{a}-M x_{a} \tag{3.15}
\end{equation*}
$$

Substituting (3.9) and (3.15) into (2.6), we have

$$
\begin{equation*}
C_{2}^{\prime}=M^{2} S^{2} \tag{3.16}
\end{equation*}
$$

where the matrix $S^{2}=S_{1}^{2}+S_{2}^{2}+S_{3}^{2}$ always may be chosen in the diagonal form,

$$
s^{2} \phi_{s}=s(s+1) \phi_{s} \quad|j-\tau| \leqslant s \leqslant j+\tau .
$$

The operators (3.9)-(3.11) are defined in a Hilbert space of square integrable functions $\phi\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$. In order to diagonalise the operator M (3.4) and (3.5) we introduce in place of $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ the new variables $\left\{p_{1}, p_{2}, p_{3}, m\right\}$ where $m=$ $E+\epsilon p_{4}$. Then

$$
\frac{\partial}{\partial p_{4}} \rightarrow\left(\epsilon+\frac{p_{4}}{E}\right) \frac{\partial}{\partial m} \quad \frac{\partial}{\partial p_{a}} \rightarrow \frac{\partial}{\partial p_{a}}+\frac{p_{a}}{E} \frac{\partial}{\partial m}
$$

and the operators (3.9)-(3.11) and (3.15) take the form

$$
\begin{align*}
& \hat{P}_{0}^{\prime}=m_{0}+\epsilon \frac{p^{2}}{2 m} \quad \hat{P}_{a}^{\prime}=p_{a} \quad M^{\prime}=\epsilon m \\
& J_{a}^{\prime}=-\mathrm{i}(\boldsymbol{p} \times(\partial / \partial \boldsymbol{p}))_{a}+S_{a} \quad\left(G_{a}^{+}\right)^{\prime}=-\mathrm{i} \epsilon m\left(\partial / \partial p_{a}\right) \tag{3.17a}\\
& C_{1}^{\prime}=x^{2} \quad C_{2}^{\prime}=m^{2} \boldsymbol{S}^{2} \quad C_{3}^{\prime}=\epsilon m \tag{3.17b}\\
& K^{\prime}=-\mathrm{i} m(\partial / \partial m) \quad\left(G_{a}^{-}\right)^{\prime}=\mathrm{i}\left[\epsilon p_{a}(\partial / \partial m)-\hat{P}_{0}^{\prime}\left(\partial / \partial p_{a}\right)\right]-\epsilon\left(S_{a b} p_{b}+S_{4 a} \chi\right) / m \tag{3.17c}
\end{align*}
$$

where

$$
x \leqslant m<\infty \quad m_{0}=\epsilon\left(\varkappa^{2} / 2 m\right)
$$

The generators (3.17) are Hermitian with respect to the scalar product (3.3).
So we reach the following result:
Theorem. The Hilbert space of the IR $D^{\epsilon}(x, j, \tau)$ of the $\mathrm{P}(1,4)$ algebra, corresponding to $P^{2}=x^{2}>0$, is expanded into the direct integral of the subspaces, which correspond to the IR of the $\mathrm{G}(3)$ algebra with the following values of the invariant operators: $C_{1}=\chi^{2}$, $C_{2}=m^{2} s(s+1), C_{3}=\epsilon m,|x| \leqslant m<\infty,|j-\tau| \leqslant S \leqslant j+\tau$. The explicit form of the $\mathrm{P}(1,4)$ group generators in the Galilei basis and that of the transition operator, which connects the canonical and the $G(3)$ bases, are given by the formulae (3.8), (3.14) and (3.17).

To conclude this section we consider the IR of the $\mathbf{P}(1,4)$ algebra, corresponding to $P^{2}=0$. The realisations of such an IR have been obtained in the form (Fushchich and Krivsky 1968a, b):

$$
\begin{aligned}
& P_{0}=\epsilon E_{0} \equiv \epsilon\left(p^{2}+p_{4}^{2}\right)^{1 / 2} \quad P_{a}=p_{a} \quad P_{4}=p_{4} \\
& J_{0 a}=-\mathrm{i} \epsilon E_{0} \frac{\partial}{\partial p_{a}}-\epsilon \frac{S_{a b} p_{b}}{E_{0}+p_{4}} \quad J_{04}=-\mathrm{i} \epsilon E_{0} \frac{\partial}{\partial p_{4}} \\
& J_{4 a}=\mathrm{i}\left(p_{a} \frac{\partial}{\partial p_{4}}-p_{4} \frac{\partial}{\partial p_{a}}\right)+\epsilon \frac{S_{a b} p_{b}}{E_{0}+p_{4}}
\end{aligned}
$$

where $S_{a b}$ are the generators of the IR $D(s)$ of the $\operatorname{SO}(3)$ group. Substituting (3.18) into (2.3), one obtains

$$
\begin{align*}
& \hat{P}_{0}=\frac{1}{2}\left(\epsilon E_{0}-p_{4}\right) \quad M=\epsilon E_{0}+p_{4} \\
& J_{a}=-\mathrm{i}\left(p \times \frac{\partial}{\partial p}\right)_{a}+S_{a} \\
& G_{a}^{+}=\mathrm{i}\left(p_{a} \frac{\partial}{\partial p_{4}}-p_{4} \frac{\partial}{\partial p_{a}}\right)+\mathrm{i} \epsilon E_{0} \frac{\partial}{\partial p_{a}} \tag{3.18}\\
& K=-\mathrm{i} \epsilon E_{0} \frac{\partial}{\partial p_{4}} \\
& G_{a}^{-}=\frac{1}{2}\left(-\mathrm{i} p_{a} \frac{\partial}{\partial p_{4}}-\mathrm{i} \hat{P}_{0} \frac{\partial}{\partial p_{a}}\right)-\epsilon \frac{S_{a b} p_{b}}{E_{0}+\epsilon p_{4}} .
\end{align*}
$$

It is not difficult to see that replacement of the variables $\left\{\boldsymbol{p}, p_{4}\right\} \rightarrow\{\boldsymbol{p}, m\}$, where $m=E_{0}+\epsilon p_{4}$, reduces the generators (3.18) to the form (3.17), where, however, $\varkappa=0$, $0 \leqslant m<\infty$ and s has the fixed value, which characterises the IR of the $\mathrm{SO}(3)$ group. So
we have established the explicit form of the generators of the $\mathrm{P}(1,4)$ group, corresponding to $P^{2}=0$, in the Galilei basis.

4. The representations with $\boldsymbol{P}^{\mathbf{2}}<0$

We now use the IR of the $P(1,4)$ group, which corresponds to $P^{2}=-\eta^{2}<0$. The generators of such representations have been obtained in the form (Fushchich and Krivsky 1968a, b, 1969)

$$
\begin{align*}
& P_{0}=p_{0} \quad P_{a}=p_{a} \quad P_{4}=\epsilon\left(p_{0}^{2}+\eta^{2}-p_{a}^{2}\right)^{1 / 2} \\
& J_{\alpha \beta}=\mathrm{i}\left(p_{\beta} \frac{\partial}{\partial p_{\alpha}}-p_{\alpha} \frac{\partial}{\partial p_{\beta}}\right)+S_{\alpha \beta} \quad \epsilon= \pm 1 \tag{4.1}\\
& J_{4 \alpha}=-\mathrm{i} P_{4} \frac{\partial}{\partial p_{\alpha}}-\epsilon \frac{S_{\alpha \beta} p^{\beta}}{\left|P_{4}\right|+\eta} \quad \alpha, \beta=0,1,2,3,
\end{align*}
$$

where $S_{\alpha \beta}$ are the matrices which realise IR of the Lie algebra of the $\operatorname{SO}(1,4)$ group.
Reducing the representation (4.1) by the representations of the Lie algebra of the Galilei group, the mass operator $M=P_{0}+P_{4}$ may take the zero value. Let us impose the $G(3)$-invariant condition of turning into zero in the hyperspace, corresponding to zero eigenvalues of the operator M, on the functions from the space of the IR (4.1) (this hyperspace is the five-dimensional half-cylinder $\left.p^{2}=\eta^{2}, \epsilon p_{0}<0\right)$.

Using the transformation operator on the generators (4.1)

$$
\begin{equation*}
U_{2}=\exp \left(\mathrm{i} S_{0 a} p_{a} \theta / p\right) \quad \theta=2 \tanh ^{-1}\left[p /\left(\eta+\left|P_{4}\right|+\epsilon p_{0}\right)\right] \tag{4.2}
\end{equation*}
$$

and using the relations
$U_{2} x_{0} U_{2}^{-1}=x_{0}+S_{0 a} p_{a} \frac{1}{p} \frac{\partial \theta}{\partial p_{0}} \quad x_{\mu}=\mathrm{i} \frac{\partial}{\partial p_{\mu}}$
$U_{2} x_{a} U_{2}^{-1}=x_{a}+\frac{p_{a}}{p} \frac{S_{0 b} p_{b}}{p}\left(\frac{\partial \theta}{\partial p}-\frac{1}{p} \sinh \theta\right)+\frac{1}{p} S_{0 a} \sinh \theta+\frac{S_{a b} p_{b}}{p^{2}}(1-\cosh \theta)$
$U_{2} S_{0 a} U_{2}^{-1}=S_{0 a} \cosh \theta-(1 / p) S_{a b} p_{b} \sinh \theta+\left(p_{a} / p\right)\left(S_{0 b} p_{b} / p\right)(1-\cosh \theta)$
$U_{2} S_{a b} p_{b} U_{2}^{-1}=S_{a b} p_{b} \cosh \theta+\left[\left(p_{a} S_{0 b} p_{b} / p\right)-p S_{0 a}\right] \sinh \theta$
$\sinh \theta=\frac{p\left(\epsilon p_{0}+\left|P_{4}\right|+\eta\right)}{\left(\epsilon p_{0}+\left|P_{4}\right|\right)\left(\left|P_{4}\right|+\eta\right)} \quad \frac{\partial \theta}{\partial p_{0}}=\frac{p}{\left|P_{4}\right|\left(\left|P_{4}\right|+\eta\right)}$
$1-\cosh \theta=\frac{-p^{2}}{\left(\left|P_{4}\right|+\eta\right)\left(\epsilon p_{0}+\left|P_{4}\right|\right)} \quad \frac{\partial \theta}{\partial p}=\frac{\left|P_{4}\right|\left(\epsilon p_{0}+\eta\right)+p_{0}^{2}+\eta^{2}}{\left|P_{4}\right|\left(\left|P_{4}\right|+\eta\right)\left(\left|P_{4}\right|+\epsilon p_{0}\right)}$,
one comes to the realisation

$$
\begin{align*}
& P_{0}^{\prime \prime}=p_{0} \quad P_{a}^{\prime \prime}=p_{a} \quad P_{4}^{\prime \prime}=\epsilon\left(p_{0}^{2}+\eta^{2}-p^{2}\right)^{1 / 2} \\
& J_{a b}^{\prime \prime}=\mathrm{i}\left(p_{b} \frac{\partial}{\partial p_{a}}-p_{a} \frac{\partial}{\partial p_{b}}\right)+S_{a b} \tag{4.3}\\
& J_{0 a}^{\prime \prime}=\mathrm{i}\left(p_{a} \frac{\partial}{\partial p_{0}}-p_{0} \frac{\partial}{\partial p_{a}}\right)-\frac{S_{a b} p_{b}+S_{a 0} \eta}{\left|P_{4}^{\prime \prime}\right|+\epsilon p_{0}} \\
& J_{4 a}^{\prime \prime}=-\mathrm{i} P_{4}^{\prime \prime} \frac{\partial}{\partial p_{a}}+\frac{S_{a b} p_{b}+S_{a 0} \eta}{\left|P_{4}^{\prime \prime}\right|+\epsilon p_{0}} \quad J_{04}^{\prime \prime}=\mathrm{i} P_{4}^{\prime \prime} \frac{\partial}{\partial p_{0}} .
\end{align*}
$$

Substituting (4.3) into (2.3) and going from $\left\{p_{a}, p_{0}\right\}$ to the new variables $\left\{p_{a}, m\right\}$, where $m=p_{0}+\left(p_{0}^{2}+\eta^{2}-p_{a}^{2}\right)^{1 / 2}$, one obtains the Galilei group generators in the form (3.17a), and the remaining generators G_{a}^{-}, K in the form ($3.17 c$), where, however, $m_{0}=-\eta^{2} / 2 m,-\eta^{2}<m<0,0<m<\infty$, and $S_{a b}$ are the generators of the group $\mathrm{SO}(3) \subset \mathrm{SO}(1,3)$.

5. Covariant representation of the $\mathbf{P}(1,4)$ group

Consider an arbitrary covariant representation of the Lie algebra of the $P(1,4)$ group. Such a representation is realised by the operators

$$
\begin{equation*}
P_{\mu}=p_{\mu} \quad J_{\mu \nu}=\mathrm{i}\left(p_{\nu} \frac{\partial}{\partial p_{\mu}}-p_{\mu} \frac{\partial}{\partial p_{\nu}}\right)+S_{\mu \nu} \tag{5.1}
\end{equation*}
$$

where $S_{\mu \nu}$ are the generators of a representation of the $S O(1,4)$ group. Let us confine ourselves to the case where $P_{\mu} P^{\mu} \Psi>0$.

Substituting (5.1) into (2.3), we obtain

$$
\begin{array}{ll}
\hat{P}_{0}=\frac{1}{2}\left(p_{0}-p_{4}\right) & \hat{P}_{a}=p_{a} \\
J_{a}=-\mathrm{i}\left(\boldsymbol{p} \times \frac{\partial}{\partial \boldsymbol{p}}\right)_{a}+S_{a} & \boldsymbol{M}=p_{0}+p_{4} \\
G_{a}^{+}=\tilde{x}_{0} p_{a}-x_{a} M+\lambda_{a}^{+} & \\
G_{a}^{-}=\hat{x}_{4} p_{a}-\tilde{x}_{a} \hat{P}_{0}+\frac{1}{2} \lambda_{a}^{-} & \tag{5.2}\\
K=\tilde{x}_{4} M-\tilde{x}_{0} \hat{P}_{0}+S_{04} &
\end{array}
$$

where

$$
\lambda^{ \pm}=S_{0 a} \pm S_{4 a} \quad \tilde{x}_{0}=2 \mathrm{i}\left(\frac{\partial}{\partial p_{0}}-\frac{\partial}{\partial p_{4}}\right) \quad \tilde{x}_{4}=\mathrm{i}\left(\frac{\partial}{\partial p_{0}}+\frac{\partial}{\partial p_{4}}\right)
$$

For the transition of the realisation (5.2) into the Galilei basis we use the operator

$$
\begin{equation*}
U_{3}=\exp \left[\mathrm{i} \lambda^{+} p / M\right] \tag{5.3}
\end{equation*}
$$

With the help of the transformation

$$
\begin{array}{lr}
\hat{P}_{\mu} \rightarrow \hat{P}_{\mu}^{\prime \prime \prime}=U_{3} \hat{P}_{\mu} U_{3}^{-1} & J_{a} \rightarrow J_{a}^{\prime \prime \prime}=U_{3} J_{a} U_{3}^{-1} \\
G_{a}^{ \pm} \rightarrow\left(G_{a}^{ \pm}\right)^{\prime \prime \prime}=U_{3} G_{a}^{ \pm} U_{3}^{-1} & K \rightarrow K^{\prime \prime \prime}=U_{3} K U_{3}^{-1},
\end{array}
$$

one comes to the realisation in which the invariant operators (2.6) of the $G(3)$ subalgebra are of diagonal form:

$$
\begin{aligned}
& \hat{P}_{0}^{\prime \prime \prime}=\frac{1}{2}\left(p_{0}-p_{4}\right) \quad \hat{P}_{a}^{\prime \prime \prime}=p_{a} \quad M^{\prime \prime \prime}=M=p_{0}+p_{4} \\
& J_{a}^{\prime \prime \prime}=-\mathrm{i}(\boldsymbol{p} \times \partial / \partial \boldsymbol{p})_{a}+S_{a} \quad G_{a}^{+}=\tilde{x}_{0} p_{a}-x_{a} M \\
& G_{a}^{-}=\tilde{x}_{4} p_{a}-x_{a} \hat{P}_{0}^{\prime \prime \prime}-\frac{S_{a b} p_{b}+S_{40} p_{a}}{M}+\frac{1}{2} \lambda_{a}^{-}-\lambda^{+} \frac{p_{\mu} p^{\mu}}{M^{2}} \quad K^{\prime \prime \prime}=\tilde{x}_{4} M-\tilde{x}_{0} \hat{P}_{0}^{\prime \prime \prime}+S_{04},
\end{aligned}
$$

where $S_{a}=\frac{1}{2} \epsilon_{a b c} S_{b c}$. The operators C_{a} (2.6) take the form

$$
C_{1}^{\prime \prime \prime}=p_{\mu} p^{\mu} \quad C_{2}^{\prime \prime \prime}=M^{2} S^{2} \quad C_{3}^{\prime \prime \prime}=M
$$

i.e. the eigenvalues of the operator C_{1} coincide with the values of P^{2}, the eigenvalues of the operator C_{2} are characterised by the spectrum of the Casimir operator of the group $\mathrm{SO}(3) \subset \mathrm{SO}(1,4)$, and the eigenvalues of the operator C_{3} lie in the interval $\left(C_{1}^{\prime \prime \prime}\right)^{1 / 2} \leqslant$ $C_{3}^{\prime \prime \prime}<\infty$.

The results of this section may be used for the diagonalisation of the wave equations, which are invariant under the $\mathrm{P}(1,4)$ group. As an example we will consider the five-dimensional generalisation of the Dirac equation

$$
\begin{equation*}
\left(\gamma_{\mu} p^{\mu}+x\right) \Psi=0 \quad \mu=0,1,2,3,4 . \tag{5.4}
\end{equation*}
$$

On the set of the solutions of the equation (5.4) the generators of the $\mathrm{P}(1,4)$ group have the form (5.1) where $S_{\mu \nu}=\frac{1}{4}\left[\gamma_{\mu}, \gamma_{\nu}\right]$. Using the operator (5.3) on equation (5.4), one obtains an equation, which is equivalent to (5.4) but is manifestly invariant under the Galilei group

$$
\begin{equation*}
\hat{P}_{0}^{\prime \prime \prime} \Phi_{+}=\left(x / 2 m+p^{2} / 2 m\right) \Phi_{+} \quad \Phi_{-}=0 \tag{5.5}
\end{equation*}
$$

where

$$
\Phi_{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{0} \gamma_{4}\right) \Phi \quad \Phi=U_{3} \Psi \quad x \leqslant m<\infty .
$$

If one imposes the Galilean-invariant subsidiary condition $\left(p_{0}+p_{4}\right) \Psi=m_{0} \Psi$ and puts $x=0$, then equation (5.4) is reduced to the Levi-Leblond equation for the non-relativistic particle of spin $s=\frac{1}{2}$ (Levi-Leblond 1967). In this case (5.3) coincides with the operator which diagonalises the Levi-Leblond equation (Nikitin and Salogub 1975).

6. IR of the Poincare group in the $\mathbf{G (2)}$ basis

The transition of the IR of the $\mathrm{P}(1,3)$ group to the basis of a two-dimensional Galilei group $G(2)$ may be made by complete analogy with the reduction $P(1,4) \rightarrow G(3)$. Here we consider only the representations of the $P(1,3)$ group, which correspond to time-like four-momenta. The generators of such a representation in a Shirokov-Foldy realisation (Shirokov 1954a, b, Foldy 1956) have the form (3.1) where $\mu, \nu=0,1,2,3$; $k, l=1,2,3$. With the help of the transformation

$$
P_{\mu} \rightarrow \tilde{P}_{\mu}=U P_{\mu} U^{-1} \quad J_{\mu \nu} \rightarrow \tilde{J}_{\mu \nu}=U J_{\mu \nu} U^{-1}
$$

where
$U=\exp \left\{\left(\mathrm{i} S_{3 \alpha} p_{\alpha} /|p|\right) \tan ^{-1}\left[|p| /\left(\left|P_{0}\right|+\epsilon p_{3}+x\right)\right\}, \quad|p|=\left(p_{1}^{2}+p_{2}^{2}\right)^{1 / 2} \quad \alpha=1,2\right.$,
and the following replacement of the variables $\left\{p_{1}, p_{2}, p_{3}\right\} \rightarrow\left\{p_{1}, p_{2}, m\right\}$, where $m=$ $\epsilon p_{3}+\left(p_{1}^{2}+p_{2}^{2}+\chi^{2}\right)^{1 / 2}$, one obtains the generators of the Poincaré group in the $G(2)$ basis:

$$
\begin{align*}
& \hat{P}_{0}=\frac{1}{2}\left(\tilde{P}_{0}+\tilde{P}_{3}\right)=\varkappa^{2} / 2 m+|p|^{2} / 2 m \quad \hat{P}_{\alpha}=p_{\alpha}, \\
& J_{3}=\mathrm{i}\left[p_{2}\left(\partial / \partial p_{1}\right)-p_{1}\left(\partial / \partial p_{2}\right)\right]+S_{12} \quad M=\epsilon m \tag{6.1}\\
& G_{\alpha}^{+}=\tilde{J}_{0 \alpha}+\tilde{J}_{3 \alpha}=-\mathrm{i} \epsilon m \frac{\partial}{\partial p_{\alpha}} \quad|x| \leqslant m<\infty \\
& G_{\alpha}^{-}=\frac{1}{2}\left(\tilde{J}_{0 \alpha}-\tilde{J}_{3 \alpha}\right)=\mathrm{i}\left[p_{\alpha}(\partial / \partial m)-\hat{P}_{0}\left(\partial / \partial p_{\alpha}\right)\right]-\epsilon\left(S_{\alpha \beta} p_{\beta}+S_{3 \alpha} \chi\right) / m \\
& K=\tilde{J}_{03}=-\mathrm{i} m(\partial / \partial m) . \tag{6.2}
\end{align*}
$$

The operators (6.1) coincide with the 'kinematical group generators', which are used in the null-plane formalism (see e.g. Leutwyler and Stern 1968).

Using the results of $\S 3-\S 5$, it is not difficult to make the transition into the $G(2)$ basis of the representations of the $\mathrm{P}(1,3)$ algebra which corresponds to light-like and space-like four-momenta.

7. Connection between the Galilei and the Poincaré bases

We now consider the connection between the realisations of the generators of the $P(1,4)$ group (corresponding to time-like five-momenta) in both the Galilei and Poincaré bases.

The generators of the $\mathrm{P}(1,4)$ group in the Poincaré basis (i.e. in the basis where the Casimir operators of the $\mathrm{P}(1,3)$ group are of diagonal type) have the form (Fushchich et al 1976, Nikitin et al 1976)
$P_{0}=E=\left(p^{2}+\bar{m}^{2}\right)^{1 / 2} \quad P_{a}=p_{a} \quad P_{4}=\epsilon_{4}\left(\bar{m}^{2}+x^{2}\right)^{1 / 2}$
$J_{a b}=\mathrm{i}\left[p_{b}\left(\partial / \partial p_{a}\right)-p_{a}\left(\partial / \partial p_{b}\right)\right] \quad \epsilon_{4}= \pm 1$
$J_{0 a}=-\mathrm{i} p_{0}\left(\partial / \partial p_{a}\right)-S_{a b} p_{b} /(E+\bar{m}) \quad a, b=1,2,3$
$J_{04}=-\mathrm{i} E\left\{\epsilon_{4}\left(1-\chi^{2} / \bar{m}^{2}\right)^{1 / 2}, \partial / \partial \bar{m}\right\}-(\chi / \bar{m})\left(S_{4 a} p_{a} / \bar{m}\right)$
$J_{4 a}=\mathrm{i} p_{a}\left\{\epsilon_{4}\left(1-\chi^{2} / \bar{m}^{2}\right)^{1 / 2}, \partial / \partial \bar{m}\right\}-\mathrm{i} \epsilon \bar{m}\left(1-\chi^{2} / \bar{m}^{2}\right)^{1 / 2} \partial / \partial p_{a}$

$$
+\frac{\chi p_{a} S_{4 b} p_{b}}{m^{2}(E+m)}+\epsilon_{4}\left(1-\chi^{2} / \bar{m}^{2}\right)^{1 / 2}\left[S_{a b} p_{b} /(E+\tilde{m})\right]+\frac{\chi S_{4 a}}{\tilde{m}}
$$

where

$$
\{A, B\}=A B+B A \quad|x| \leqslant \bar{m}<\infty .
$$

The generators (7.1) are Hermitian with respect to the scalar product

$$
\left(\chi_{1}, \chi_{2}\right)=\sum_{s=|j-\tau|}^{j+\tau} \int_{x}^{\infty} \mathrm{d} \bar{m} \int \frac{\mathrm{~d}^{3} p}{2 E} \chi_{1}^{\dagger}\left(\boldsymbol{p}, \bar{m}, s, s_{3}\right) \chi_{2}\left(\boldsymbol{p}, \bar{m}, s, s_{3}\right) .
$$

As soon as the operators (7.1) and (3.17) realise the same IR $D^{+}(\varkappa, j, \tau)$ of the $\mathrm{P}(1,4)$ group, the equivalence transformation, which connects these two realisations, exists. In order to come from (7.1) to (3.17), we make the isometric transformation

$$
\begin{equation*}
P_{\mu} \rightarrow W P_{\mu} W^{-1} \quad J_{\mu \nu} \rightarrow W J_{\mu \nu} W^{-1} \tag{7.2}
\end{equation*}
$$

and the following replacement of variables

$$
\begin{equation*}
p_{a} \rightarrow p_{a} \quad \bar{m} \rightarrow \bar{m}(m, \boldsymbol{p}) \tag{7.3}
\end{equation*}
$$

where

$$
\begin{align*}
& W=\left(1-x / \bar{m}^{2}\right)^{1 / 4} \exp \left[\mathrm{i}\left(S_{4 a} p_{a} / p\right)\left(\theta_{1}-\theta_{2}\right)\right] \\
& \theta_{1}=2 \tan ^{-1}\left\{p /\left[E+\epsilon_{4}\left(\bar{m}^{2}-x^{2}\right)^{1 / 2}+x\right]\right\} \\
& \theta_{2}=2 \tan ^{-1}\left[\epsilon_{4} p\left(\bar{m}^{2}-x^{2}\right)^{1 / 2} /(E+m)(m+x)\right] \tag{7.4}\\
& \bar{m}=(1 / 2 m)\left[\left(m^{2}-x^{2}-p^{2}\right)^{2}+4 m^{2} x^{2}\right]^{1 / 2} .
\end{align*}
$$

One can ensure by direct verification that the transformations (7.2)-(7.4) reduce the generators (7.1) into the Galilei basis (i.e. that the transformed generators coincide with (3.17) after substitution into (2.3)). We do not give the detailed calculations here because the transformations (7.2)-(7.4) may be represented as two consequent ones: namely, the transition from the Poincaré to the canonical basis (Nikitin et al 1976)

$$
\begin{align*}
& P_{\mu} \rightarrow V P_{\mu} V^{-1} \quad J_{\mu \nu} \rightarrow V J_{\mu \nu} V^{-1} \\
& \bar{m} \rightarrow \bar{m}\left(p_{4}\right)=\epsilon_{4}\left(p_{4}^{2}+\varkappa^{2}\right)^{1 / 2} \tag{7.5}\\
& V=\left(1-\varkappa^{2} / \bar{m}^{2}\right)^{1 / 4} \exp \left(\mathrm{i}_{0 a} p_{a} \theta_{2} / p\right)
\end{align*}
$$

and then the transition from the canonical basis to the Galilei one (see § 3). So

$$
W=U_{1} V
$$

where V and U_{1} are given by equations (7.5), (3.8), (3.14).
The transformation (7.2)-(7.4) may be used to establish the connection between the vectors in the Galilei and in the Poincaré bases. This connection is given by the equations:

$$
\begin{aligned}
& \phi\left(\boldsymbol{p}, m, s, s_{3}\right)=W \hat{P}_{s} \hat{P}_{s_{3}} P_{s^{\prime}} P_{s_{3}^{\prime}} \chi\left(\boldsymbol{p}, m(\bar{m}, \boldsymbol{p}), s, s_{3}\right) \\
& \chi\left(\boldsymbol{p}, m, s, s_{3}\right)=W^{-1} \tilde{P}_{s} \tilde{P}_{s_{3}} P_{s^{\prime}} P_{s_{3}^{\prime}} \phi\left(\boldsymbol{p}, \bar{m}(m, \boldsymbol{p}), s, s_{3}\right) \\
& m(\bar{m}, \boldsymbol{p})=\epsilon_{4}\left(\bar{m}^{2}-\chi^{2}\right)^{1 / 2}+\left(p^{2}+\bar{m}^{2}\right)^{1 / 2} \\
& |j-\tau| \leqslant s, s^{\prime} \leqslant j+\tau \quad-s \leqslant s_{3} \leqslant s \quad-s^{\prime} \leqslant s_{3}^{\prime} \leqslant s^{\prime}
\end{aligned}
$$

where $P_{s}, P_{s_{3}}, \hat{P}_{s}, \hat{P}_{s_{3}}, \tilde{P}_{s}, \tilde{P}_{s_{3}}$, are the projectors into the subspace with the corresponding fixed value of s and s_{3}.

$$
\begin{equation*}
P_{s}=\prod_{\tilde{s} \neq s} \frac{S^{2}-\tilde{s}(\tilde{s}+1)}{s(s+1)-\tilde{s}(\tilde{s}+1)} \quad P_{s_{3}}=\prod_{s_{3} \neq s_{3}} \frac{S_{3}-\tilde{s}_{3}}{s_{3}-\tilde{s_{3}}} \tag{7.6}
\end{equation*}
$$

$\hat{P}_{s}=W^{-1} P_{s} W \quad \hat{P}_{s_{3}}=W^{-1} P_{s_{3}} W \quad \tilde{P}_{s_{3}}=W P_{s_{3}} W^{-1} \quad \tilde{P}_{s}=W P_{s} W^{-1}$.
$\hat{P}_{s}, \hat{P}_{s_{3}}, \tilde{P}_{s}, \tilde{P}_{s_{3}}$ may be obtained from (7.6) by the substitution
$S_{a} \rightarrow \hat{S}_{a}=W^{-1} S_{a} W=S_{a} \cos \tilde{\theta}+\left(p_{a} S_{b} p_{b} / p^{2}\right)(1-\cos \tilde{\theta})$

$$
+\frac{1}{p} \epsilon_{a b c} p_{b} S_{4 c} \sin \tilde{\theta} \quad \tilde{\theta}=\theta_{1}-\theta_{2}
$$

$S_{a} \rightarrow \tilde{S}_{a}=W S_{a} W^{-1}=S_{a} \cos \tilde{\theta}+\left(p_{a} S_{b} p_{b} / p^{2}\right)(1-\cos \tilde{\theta})-(1 / p) \epsilon_{a b c} p_{b} S_{4 c} \sin \tilde{\theta}$.

Acknowledgment

We would like to express our gratitude to the referee for his useful comments.

References

Aghassi J J, Roman P and Santilli R M 1970 J. Math. Phys. 11 2297-305
Bargman V 1954 Ann. Math. 59 1-46
Barrabes K and Henry J 1976 J. Phys. A: Math. Gen. 9 1428-34
Castell L 1967 Nuovo Cim. 49 285-94

Elizalde E and Gomish J 1978 J. Math. Phys. 19 1790-7
Fedorchuck V M 1978 Mathematical Institute, Kiev, preprint 78-18
Foldy L L 1956 Phys. Rev. 102 568-74
Fushchich V I 1970 Teor. Mat. Fiz. 4 360-7
Fushchich V I and Krivsky I Yu 1968a Nucl. Phys. B 7 79-87
-_ 1968b Institute for Theoretical Physics, Kiev, preprint 68-72

- 1969 Nucl. Phys. B 14 537-44

Fushchich V I, Nikitin A G and Yurik I I 1976 Mathematical Institute, Kiev, preprint 75-85
Leutwyler H and Stern J 1968 Ann. Phys. 112 94-164
Levi-Leblond J-M 1967 Comm. Math. Phys. 6 286-311
Nikitin A G, Fushchich V I and Yurik I 1976 Teor. Mat. Fiz, 26 202-20 (transl. Teoret. and Math. Phys. 26 138-47)
Nikitin A G and Salogub V A 1975 Ukr. Fiz. J. 20 1730-2
Shirokov Yu M 1954a Dokl. Akad. Nauk USSR 94 857-61
_- 1954b Dokl. Akad. Nauk USSR 99 737-9

[^0]: \dagger The paper of Fedorchuck (1978) is devoted to the classification and the description of all subgroups of the $P(1,4)$ group.
 \ddagger We will indicate the groups and the corresponding Lie algebras by the same indices.

